
MATHLIB Review

Author: Walter E. Brown
Author: Marc Paterno
Revision: 1.34
Date: 2004-02-16

Table of Contents

1 Introduction

2 Underpinnings

3 Library Organization

4 Scope and Coverage

5 Design

6 Conclusion

1 Introduction

1.1 Mission and Scope of this Review

We have been asked, on behalf of CMS, to review A Proposal for a C++
MATHLIB by René Brun. We address such issues as design, organization, and
coverage of the proposed MATHLIB product, and provide technical analysis and
commentary regarding numerous aspects of the proposal.

1.2 Overview

The proposal presents a case for the creation of several mathematically-oriented
libraries, collectively targeting the needs of the HEP community. The proposal
document addresses, in its first three pages, selected issues related to the design
and organization of such a project; the bulk of the remaining 21+ pages of
the proposal analyze the proposed project’s coverage. A brief bibliography
concludes the proposal.

1.3 General Impressions

We agree that a project to produce libraries along the general lines outlined by
the proposal could be a valuable contribution to the identified constituency.

1

Much of the proposal’s nomenclature seems specific to, and oriented toward
implementation via, ROOT. We believe that the target community would bene-
fit greatly from a presentation free of assumptions regarding any selected target
environment.

2 Underpinnings

2.1 Project Goals

In order to guide the design of any project, the goals for the project must be
made clear. This proposal neither sets forth nor refers to a clear set of goals for
a MATHLIB product. Although such goals were presumably known, we believe
the proposal would be improved by formally and clearly articulating them.

We recommend that requirements for the MATHLIB product be
formally stated. If such goals have been provided elsewhere, those
goals should be referenced in this proposal.

2.2 Why C++?

While lacking a rationale describing the purpose of the library, the proposal does
contain “reasons to have a true C++ library.” The proposal does not spell out
what makes a “true” C++ library; here is the list of features we think necessary:

1. Use of object-orientation where appropriate,

2. Use of genericity (templates, if you like) where appropri-
ate,

3. Use of procedural paradigm where appropriate,

4. Use of functional paradigm1 where appropriate,

5. Support for clients’ use of multiple paradigms where pos-
sible,

6. Support for extensibility by clients.2

7. Adherence to well-known design principles, e.g. separation
of concerns and “pay for only what you use,” also known
as the zero-overhead principle.

2.3 Critique of Points in the Proposal

The proposal presents the following six “reasons to have a true C++ library”;
we address each in turn.

1. We want to interact with real objects (data and algorithms), not
just algorithms.

Such a sweeping statement seems too strong. For some problems, interacting
with objects will be an appropriate solution -- but not in every case. As we
state above (Why C++?), one of the strengths of C++ is its support of many
programming paradigms. We recommend against a priori restrictions that may
not be appropriate in all cases.

2

We recommend the appropriate use of all the features of modern
C++, in the appropriate contexts. The should be no a priori de-
mand to use a single paradigm for all contexts, nor should there be
an a priori refusal to use any paradigm.

2. We want to provide higher level interfaces hiding the implementa-
tion details (algorithms). A true Object-Oriented API should remain
stable if internal storage or algorithms change. One can imagine the
Mathlib classes being improved over time, or adapted to standard
algorithms that could come with the new C++ versions.

We agree that hiding irrelevant implementation detail is important, but
clearly an object interface isn’t always needed. For example, few know (and
even fewer care) what algorithm is used to compute sin(x). Even if someone
produces a better algorithm, the interface stays the same. But if, for example, a
better way of reporting domain errors were produced, an interface change would
be quite likely, and, under the circumstance, desirable. See a below for more on
the subject of internal state for algorithms as it affects efficiency in thread-safe
programs.

3. Many classes require a good graphics interface. A large subset of
CERNLIB or GSL has to do with functions. Visualizing a function
requires to know some of its properties, eg, singularities or asymp-
totic behaviours. This does not mean that the function classes must
have built-in graphics. But they must be able to call graphics service
classes able to exploit the algorithms in the functions library.

We agree with the importance of graphics in a modern environment. As-
suming “they” refers to the functions, we strongly disagree with the rationale.

The business of graphics is very complex. There is a wide variety of graphics
libraries available, to say nothing about the number of graphics devices, reso-
lutions, domain and range choices, etc., not all of which are applicable to all
graphics.

There are at least three distinct functionalities under discussion:

• Computation of the value of the function at a point,

• Reporting (or computation) of features of the function, and

• Graphical display of the value of the function over some range.

The principle known as separation of concerns strongly suggests that these
different tasks not be coupled. Instead, they should interact, where necessary,
through a well-defined interface that permits independent replacement of any
one of them.

4. Many objects need operators (matrices, vectors, physics vectors,
etc.).

We agree that operator notation should be used where appropriate. How-
ever, operator notation does not require member functions. (See Exploration of
Selected Alternatives, below).

3

5. We want to embed these objects in a data model. Users start
to request that the math library takes care of memory manage-
ment and/or persistence of the object. See for instance the LHC-
feedback3, where persistence of the CLHEP was requested. The user
would like to save and restore random-generator seeds etc.

We find that this requirement is too imprecise to address in detail. Certainly
many of those things represented as objects should provide for persistability (the
example of the seed for a random generator is one such case). In other cases
(special functions, for example), persistability does not seem to apply.

In those cases where persistability is important, it should be a goal of the
MATHLIB product to allow for persistence in a manner to be chosen by the
user. The forthcoming Technical Report on C++ Library Extensions
provides one example of how such persistence facilities can be designed and
implemented.

6. We want to have an interactive interface from our interpreters,
hence a dictionary.

We believe this is not a central feature of the MATHLIB product. It is
orthogonal functionality which would best be added by a system that uses the
MATHLIB product. In fact, different languages or programming systems will
require distinct mechanisms for “wrapping” the product. The MATHLIB prod-
uct should be amenable to such “wrapping.”

2.4 Critique of Analysis of Existing Software

The proposal includes a very brief analysis of existing software. It mentions
GSL, GSL++ and CLHEP, making only a few comments about each. None of
these are libraries which cover the scope of the proposed MATHLIB product,
and so none could seriously be considered as fulfilling the need for a MATHLIB
product. We believe the purpose of the comparison is to consider the design of
each of the products; we undertake such a comparison below.

2.4.1 GSL

GSL is described as “very similar to a Fortran library”; its interface uses “arrays
or special C-structs”; its “functions do not carry an internal state” and their
level [of abstraction] is “very low.” Let us consider these assertions in the
context of some examples.

In the section “Object-Oriented API vs Procedural API,” the proposal con-
tains an example drawn for the GSL (and further critiqued below). That exam-
ple shows the two interfaces for the gamma function. Of these interfaces, the
first:

double gsl sf gamma(double x)

contains no arrays or structs. The second:

int gsl sf gamma e(double x, gsl sf result* result)

makes use of the struct gsl sf result. This type is a C-struct that carries
both the return value of the function and it associated uncertainty. While this

4

is an interesting feature, its use is peculiar to GSL. The first function shown
corresponds to “normal” use, and conforms to a natural style that is adequate for
this level of abstraction. The other mathematical special functions in GSL share
the idiom of two interfaces -- one simple, and a second to deal with propagation
of uncertainties.

Another reason that some of the GSL functions take arguments to pass
algorithm “state” is to allow for thread safety. The GSL manual contains the
following statements, explaining the use of such “workspace” variables.

Thread Safety

The library can be used in multi-threaded programs. All the func-
tions are thread-safe, in the sense that they do not use static vari-
ables. Memory is always associated with objects and not with func-
tions. For functions which use workspace objects as temporary stor-
age the workspaces should be allocated on a per-thread basis. For
functions which use table objects as read-only memory the tables
can be used by multiple threads simultaneously. Table arguments
are always declared const in function prototypes, to indicate that
they may be safely accessed by different threads.

We believe that multithreaded programming will be an increasingly impor-
tant consideration. From a technical perspective, algorithms that keep their
own state often provide poor performance in a multithreaded environment, due
to the need for locking. If such a library is designed to be thread-safe, the
performance penalty is paid even by single-threaded programs. The passing
of thread-specific data to algorithms is a standard technique to provide thread
safety in a a high-performance system.

2.4.2 GSL++

We are unfamiliar with GSL++, and so can not comment on its quality of design
or implementation.

2.4.3 CLHEP

CLHEP is described as “fulfilling also conditions 1 and 2, but not the essential
conditions 3 and 4.” As noted above, we disagree with the desire to have have the
MATHLIB product favor any particular graphics environment. Furthermore,
graphics is an orthogonal concern to be dealt with separately.

On the use of operator notation, we find this to be a factual error. CLHEP
includes a multitude of operator definitions.

Finally, it is noted that “CLHEP is also a very small subset of what is
required”; we agree, and will have more to say about coverage later in this
document.

3 Library Organization

3.1 Summary of Proposal

The proposal (on page 2) contains a suggested organization of the library. This
section of the proposal also discusses other issues, such as implementation of

5

http://www.gnu.org/software/gsl/manual/gsl-ref_2.html#SEC20
http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/

some of the library functionality; we address some of these other issues elsewhere
in this review.

The suggested organization is three groups of libraries; they are described as
“shared libraries,” presumably meaning dynamically linked libraries (as opposed
to statically linked libraries). We believe that some users will wish to use static
libraries, and some dynamic; both should be provided. We also note that the
C++ Standard does not address the creation of dynamic libraries; as a result,
the writing of portable dynamic libraries can be problematic -- extra care needs
to be taken.

The suggested organization is three groups:

A. Often used algorithms, bundled into a single library. A
core library is mentioned, into which this library is to be
embedded.

B. Classes for frequently used objects; representative
examples cited include:

1. Physics vector classes,
2. Random generators,
3. Matrices,
4. Parametric functions,
5. Minimization classes.

The proposal recommends that each of these subsets be
put into its own library.

C. Less frequently used algorithms, bundled into a single
“large” library.

3.2 Analysis of Proposal

We do not see any reason for the identification of these three “groups,” nor do
we see a description of what it means for several libraries to form a “group.”
We agree that multiple libraries are desirable, but believe the proposed “three
logical groups” organization affords insufficient granularity.

We recommend individual, cohesive libraries grouped by related
functionality, for those libraries to form a hierarchy with as little
coupling as possible, and for the libraries to have no circular depen-
dencies at all.

In the following section (Candidate Library Organization), we present an
alternate starting point for the organization of these libraries, representative of
the level of granularity we recommend.

The proposal recommends the libraries contain “dictionaries”; presumably
these are ROOT dictionaries. We believe that tight coupling of the proposed
libraries to any external products entails disadvantages. These include:

1. Prerequisites introduce impediments for the use of the li-
brary, giving more things to install.

2. Prerequisites that are visible to the user increase the learn-
ing curve for use of the library.

6

3. Dependence on external products requires keeping link
compatibility with the external product.

4. The dependent library must adapt whenever the external
product changes, or risk slipping into the use of an unsup-
ported version of the external product.

We recommend that all aspects of the MATHLIB product be al-
lowed to depend on a conforming implementation of Standard C++
and its library, free of vendor extensions.

We recommend that individual libraries depend on external prod-
ucts only when those products directly supply functionality needed
by that component library, and when the external products meet
support and quality standards to be determined by CMS.

The proposal offers to “host the [product] as a component of the ROOT
project.” Embedding the MATHLIB product into an external product links
this MATHLIB product to the release schedule of the product in which it is
embedded. The CMS community would be better served by an independent
product. It should be a relatively simple task, if the MATHLIB product is
well-designed, to make it available through ROOT.

We recommend against the subsumption of the MATHLIB prod-
uct into ROOT. A design goal should be for the MATHLIB product
to be easy to use in various environments.

The proposal recommends that the CVS structure should reflect the organi-
zation of the library structure. We agree with this.

We agree with the proposal that the CVS structure reflect the
organization of the library structure.

The proposal recommends creation of a “large” library for one of the “groups”
of components in the product. When using a “large” dynamic library, the user
pays the price of loading the entire library -- even if only a small amount of
functionality from that library is required. This argues against production of
libraries that are excessively “large.”

CMS must be the arbiter of what it considers “large,” taking
into account the expected computing resources of its users.

3.3 Candidate Library Organization

In the previous section, we recommended organizing the libraries constituting
the MATHLIB product at a somewhat finer granularity than the proposal sug-
gests. We here present, for CMS’ consideration, a listing of possible component
libraries as a candidate organization representative of the level of granularity
we recommend.

This selection of functionality was derived from the tables in the proposal.
CMS should review this list and amend it as necessary to suit its purposes
optimally.

7

1. Polynomials -- evaluation, interpolation, binomial coeffi-
cients.

2. Nonlinear root finding

3. Special functions

4. Numerical integration -- quadrature rules, Monte Carlo

5. Maximization/minimization

6. Linear fitting

7. Nonlinear fitting

8. Linear algebra

9. Integration of differential equations

10. Interpolation, splines

11. Approximation of functions (Chebyshev series, etc.)

12. Random number generation

13. Probability distributions

14. Quantum mechanics (very limited)

15. Numerical differentiation

16. Descriptive statistics

17. Physical constants

18. Euclidean and Minkowskian geometry

19. Multidimensional interpolation, surface fitting

20. Quasirandom sequences

We stress that the above list is only preliminary. It is likely that compre-
hensive analysis will suggest changes of several kinds: some entries may be
consolidated, some entries may be split, some entries may be eliminated, and
new entries may appear.

By way of contrast, we view the following components as examples of can-
didate functionality unsuitable for inclusion by the MATHLIB product.

1. Data handling such as sorting and searching

2. Job time and date

3. HEP simulation, kinematics

The following recommendations encompass our reasoning regarding the above
exclusions:

We recommend that the MATHLIB product refrain from dupli-
cating functionality already present in the C++ standard library.

We recommend that the MATHLIB product avoid incorporating
functionality that is inherently not mathematical in nature.

We recommend that the MATHLIB product avoid incorporating
functionality in the absence of widespread consensus on how such
functionality should behave.

8

4 Scope and Coverage

4.1 Criteria for Inclusion in the Library

In order to assess any proposal with respect to its scope and coverage, it is
necessary to have criteria that determine, in objective terms, the nature of the
functionality desired, and against which proposed functionality can be evalu-
ated. However, the proposal neither presents objective criteria of this nature
nor does it refer to such criteria that may have been developed elsewhere.

We believe a discussion in CMS (and even in the wider HEP community) is
necessary to discover these requirements. If such a discussion has already taken
place, it should be directly referenced and addressed.

We are pleased to note that the proposal does include a detailed comparison
of selected candidate functionality against the functionality provided by CERN-
LIB. This is an excellent approach for a prototype for the MATHLIB product’s
coverage, but more is needed.

We recommend that CMS develop and document a list of require-
ments for the functionality desired of MATHLIB product, and that
this list be sufficiently detailed as to guide the selection of library
components.

We recommend that a revised proposal be produced that directly
addressees this list of requirements.

4.2 Resources Spanned

Sections 2 through 5 of the proposal present, in tabular form, summaries of four
existing libraries that may serve as sources of desired functionality. Suggestions
are made concerning which pieces of software may be taken (or, in the case of
Fortran sources, used as a basis for re-writing).

As mentioned elsewhere in the review, we recommend a more finely-grained
collection of libraries than is proposed. In this section, we recommend a possible
allocation of the functionality suggested in the proposal to reflect this finer
granularity.

As noted above, the coverage of the proposed library is already commend-
able; using the current CERNLIB as a benchmark for completeness is an excel-
lent beginning. But CMS needs a clear statement of the functionality required
of the MATHLIB product, in order to allow evaluation of the coverage. Addi-
tionally, more complete survey of freely available software would be valuable.

We recommend additional review by CMS of the coverage of the
proposed MATHLIB product. The appropriate groups within CMS
should be asked to comment on the proposed scope and coverage of
the library (distinct from being asked to comment on the proposed
design).

Below, we present an analysis of the first two of the proposal’s tables of
functions, as examples of the sort of review we believe necessary for each table.

9

4.2.1 CERNLIB: “B - Elementary Functions”

This table presents only three functions out of the six that are listed in the
CERNLIB documentation. No reason is given for the omission of the other
functions. Since the missing functions are either not available or are defined
differently in Standard C++, yet are a part of CERNLIB, their candidacy should
be explored.

Time did not permit a detailed review of each table in the proposed docu-
ment. Consistent with our recommendation above, we urge CMS to carry out
such a detailed inspection in order to ensure that no important functionality
has been omitted.

4.2.2 CERNLIB: “C - Equations and Special Functions”

This table contains a largely complete list of the functions in the referenced
section of CERNLIB. We can identify, however, two different categories of func-
tionality as are indicated by the title of the section:

1. root finding, solution of nonlinear systems of equations,
and

2. evaluation of special mathematical functions.

Since these are orthogonal functionalities, we believe they should be pre-
sented in independent libraries.

Some of the functions mentioned are explicitly stated to deal with complex
numbers (e.g. CPOLYZ, which calculates the zeros of a complex polynomial). We
have seen few libraries which deal with complex numbers, and fewer which do
so in a fashion natural to C++.

We recommend that, if CMS needs functions of a complex vari-
able, that such functionality be implemented using native C++, e.g.,
using the C++ library classes std::complex<double>, std::complex<float>,
and std::complex<long double>.

We would like to note that the C++ Standards Committee has accepted A
Proposal to Add Mathematical Special Functions to the C++ Standard Library
(version 3), which proposes the addition of a number of these functions to the
C++ standard library.

We recommend that the MATHLIB product provide a user inter-
face to mathematical special functions.

See also Exploration of Selected Alternatives, below, for additional recom-
mendations regarding design and implementation strategies for mathematical
special functions as a part of the MATHLIB product.

5 Design

5.1 Criteria for Evaluation

The proposal discusses creation of a large number of individual libraries. There
is no discussion of the design of each library. Rather, the expressed intention is
to absorb whatever existing products are at hand, regardless of their design.

10

http://wwwasdoc.web.cern.ch/wwwasdoc/cernlib.html
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1542.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1542.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1542.pdf

We disagree with this methodology. Once the scope of functionality for
a given component library of the MATHLIB product has been identified, the
design of that component needs to be proposed and reviewed. While some
external sources may indeed provide well-designed component libraries ready
for use, we believe it is far from certain that this will uniformly be true.

We further believe it premature to discuss the time and amount of effort
required to implement a MATHLIB product before the remaining requirements
are understood and a design is in hand.

5.2 Critique of Proposed Design

While the proposal does not address the design of the component libraries of
the proposed MATHLIB product, it does present a design fragment pertaining
to part of the special functions library. This example is presented in an attempt
to prove the need for ubiquitous object-oriented design.

The proposal contrasts an “object-oriented API” to a “procedural API,” and
quickly settles on an object-oriented API for everything. We do not agree that
object-oriented design is appropriate for all purposes. As we pointed out above,
we believe there is more to a “true C++ library” than object-orientation.

5.2.1 A Case Study

Using the context of a gamma function in a special functions library, the proposal
goes on to contrast an object-oriented API with a procedural API. However, the
comparison is mixed, presenting function prototypes on the one hand but user
code on the other hand.

Instead, let us compare, in both instances, only user code to evaluate the
gamma function for a given argument:

Using a “procedural” paradigm (similar to GSL’s, and as has been accepted
into the Technical Report on C++ Library Extensions):

double y = gamma(x); // x is a double

The object-based design (in what the proposal calls the “root style”) is
presented as:

TF1 gamma("gamma", TMath::Gamma, 0, 1);
double y = gamma.Eval(x); // x is a double

We assume that TMath is a class, and TMath::Gamma is a static member
function of that class. (The only other possibility is that TMath is a namespace,
and Gamma is an element of that namespace.)

We find the procedural style to be clear and concise. Further, it seems to
us to present an appropriate level of abstraction: the implementation of the
gamma function is hidden, but not the fact that it is the gamma function that
is being invoked.

In contrast, the root style seems error-prone. At the point of function invo-
cation, the user names the object to which the function has been bound, rather
than naming the actual function wanted. This extra level of indirection leaves
an opportunity for mistakes to happen. This is illustrated by the following
erroneous code:

11

TF1 gamma("beta", TMath::Zeta, 0, 1); // Zeta is the Riemann zeta function
// ...
// later, at a distant point in the code
double y = gamma.Eval(x); // x is a double

Furthermore, the meaning of all but the second parameter of the TF1 con-
structor is not obvious. If all we want to do is evaluate the function, are any
of the other arguments necessary? Do the values of these arguments affect the
evaluation of the gamma function?

Perhaps it would be more appropriate to contrast the procedural paradigm
with direct calling of the static member function TMath::Gamma. An example
of such use would be:

double y = TMath::Gamma(x); // x is a double

This use is at best marginally object-oriented. The static member function
is used in exactly the same manner as a free function. We can see no advantages
to this design, when compared to a free function defined in a namespace.

We do, however, see a significant disadvantage to this design. The encapsu-
lation provided by the class prevents user extension of the library: a user (such
as CMS) can not add a new function which is on an equal footing with the
functions provided by the library.

It is central to this analysis that the concept being abstracted is a mathe-
matical function and that there is thus no need to allow two instances that differ
based on internal state. In fact, there is no interesting internal state to query
or manipulate. We therefore conclude that there is no need for an object ori-
entation in modeling the evaluation of mathematical functions. Objects will be
appropriate when there is an interesting internal state to query, to manipulate,
and perhaps to persist, but none of these criteria seem to be met here.

It seems to be the goal of the proposal’s class TF1 to provide the user with
certain predetermined abilities for each function. The examples given include
graphing, calculation of the derivative at a point, and calculation of the integral
over a range. We view these as orthogonal tasks; each seems best served by its
own facility which may involve a class -- or possibly by a family of classes -- but
which may involve another solution.

Conflating these facilities into a single class provides no obvious advantage.
In fact, it has the disadvantage of making the library less extensible. It makes
it harder, for example, for the user to add a new integration mechanism, on an
equal footing with others in the library. Since the class TF1 is closed (as is any
class) to extension, user additions can not be put on an equal footing as the
library-provided facilities.

Finally, the task of evaluating the mathematical function at a given point
-- clearly the most common use -- does not require any of these extra facilities.
The zero-overhead principle, central to much of C++ design, would therefore
suggest that users ought not incur any cost of these unused facilities.

Extracted from the proposal’s sole example, the above critique has studied
only two classes, TMath and TF1: we find the design of each to be significantly
flawed in the present context. To ensure the quality of the product, we believe
that each component library of the MATHLIB product needs to have its design
considered in comparable detail.

12

We recommend individual review of the design of each component
library considered for inclusion in the MATHLIB product.

5.2.2 Exploration of Selected Alternatives

What are the different ways in which one might present mathematical functions
in a library?

We present the following list to demonstrate that a wide variety of design
possibilities is available for a C++ special functions library. Almost all of these
design choices have some merits and some drawbacks. A clearly articulated
design would require at least brief consideration of each, and a choice among
the available trade-offs.

1. Using a class to encompass all the functions, one could implement
each of the candidate functions via:

• a non-virtual non-static member function,

• a virtual non-static member function,

• a non-static member function template,

• a static member function (this is the choice found in the pro-
posal), or

• a static member function template.

2. Using a class template to encompass all the functions, one could
implement each of the candidate functions via:

• a non-virtual non-static member function,

• a virtual non-static member function,

• a non-static member function template,

• a static member function, or

• a static member function template.

3. One could use a class, or a class template, to represent each candi-
date function.

4. Finally, one could use free functions (encompassed by a namespace in
order to avoid name collisions) to implement the candidate functions
via:

• an ordinary function (or an overloaded set thereof),
or

• a function template.

We have excluded, from the above list, any mention of inheritance and poly-
morphic behavior. This is because, in our judgment, the virtual function over-
head would be unacceptable for many users of such classes.

As a further illustration of the sort of analysis required for each of the com-
ponent libraries, we present the following analysis of the above options for the
presentation of a special functions library.

13

1. The first group of solutions involves a single class (such at TMath)
which presents the special functions in some manner. Of the five
possibilities listed above, four have been implicitly rejected in the
proposal. As to the remaining candidate (a static member function
to implement each special function), we believe it to be a poor choice,
largely for reasons presented during our case study in the previous
subsection.

Indeed, all solutions of this type share the same critical flaw: a class
is closed to extension. As pointed out above, that means it is not
possible for a user to add his own special function on an equal footing
with the functions which are part of the library. Furthermore, it is
not possible for the user to add a new data type and then have it
handled by overloading existing functions in the library. We believe
this flaw alone makes the entire family of solutions unsuitable.

Are there advantages to a static member function over a free func-
tion? We can see none: it is invoked in the same manner, etc.
Consider the code fragment:

double y = mathlib sf::gamma(x); // x is a double

From this alone, it is indistinguishable whether mathlib sf is a
namespace containing a free function gamma, or mathlib sf is a
class having a static member function gamma. The only important
difference is that a namespace is open, thus permitting library ex-
tensibility, while a class is closed, preventing extensibility.

2. The most significant difference distinguishing the second, class template-
based, set of solutions from the first is that the second allows for
support of user-defined data types: a user can specialize the mem-
ber templates of interest for his new type. However, this solution has
no benefit over a free function template in a namespace, for reasons
similar to those above.

3. Although implicitly rejected by the proposal. the use of a class
to represent each special function seems to be the most “object-
oriented” solution of all. As pointed out earlier, special functions
carry no interesting state, and hence there is no basis for distinguish-
ing one instance of a given special function from another instance of
the same special function. The other reasons cited above also apply.
Hence, we agree this is not an appropriate approach in this context.

4. While we see no need to introduce function templates in this context,
we do prefer the other solution from this last group: implement each
of the special functions as a free function in a namespace. This allows
for extensibility, since:

• users can define new functions, and put them into the same
namespace, and

• users can overload exiting functions for new types of data.

14

This solution also (unsurprisingly) has the advantage of being the
solution adopted by the C++ Standards Committee in working to-
ward the next version of the C++ standard. It also has the advan-
tage of easy implementation today, and easy migration to use of the
functions in the future standard library when they become widely
available.

We recommend that the special functions library be implemented
as a collection of overloaded free functions in some defined names-
pace.

We recommend that the interfaces for those functions already
proposed for inclusion in the future Standard be respected by the
MATHLIB product’s special functions library.

We recommend that functions added to the special functions li-
brary that are not part of the proposed future standard use a naming
scheme and organization of signatures in a style similar to that pro-
posed for the future standard.

We recommend that GSL be used as the underlying implementa-
tion for the first version of such a special functions library.

6 Conclusion

6.1 Summary

This document has presented a review of René Brun’s paper of November 21,
2003, Proposal for a C++ MATHLIB. We have addressed the proposal
paper from several overlapping viewpoints, including the organization, scope,
and design of the proposed MATHLIB product.

In brief, we believe the underlying idea of the proposal, to create a MATH-
LIB product for use by the CMS and wider HEP communities, has significant
potential. However, we also believe the proposal in its present form encompasses
a number of flaws. We have attempted to identify these flaws and, in most cases,
to provide guidance for their amelioration.

For convenience of the reader, the next section gathers all our recommenda-
tions, identifying the section from which each originated. Finally,

We recommend that the proposal be redrafted so as to address
the weaknesses we have identified, and that the revised proposal be
reviewed in turn.

6.2 Reprise of Recommendations

We collect here all the recommendations made earlier in this document, in the
order in which they appear. Following each recommendation, we identify the
section of this critique in which the recommendation originated.

1. We recommend that requirements for the MATHLIB prod-
uct be formally stated. If such goals have been provided
elsewhere, those goals should be referenced in this pro-
posal.

15

2. We recommend the appropriate use of all the features of
modern C++, in the appropriate contexts. The should
be no a priori demand to use a single paradigm for all
contexts. (Critique of Points in the Proposal)

3. We recommend individual, cohesive libraries grouped by
related functionality, for those libraries to form a hierar-
chy with as little coupling as possible, and for the libraries
to have no circular dependencies at all. (Analysis of Pro-
posal)

4. We recommend that all aspects of the MATHLIB product
be allowed to depend on a conforming implementation of
Standard C++ and its library, free of vendor extensions.
(Analysis of Proposal)

5. We recommend that individual libraries depend on ex-
ternal products only when those products directly supply
functionality needed by that component library, and when
the external products meet support and quality standards
to be determined by CMS. (Analysis of Proposal)

6. We recommend against the subsumption of the MATH-
LIB product into ROOT. A design goal should be for the
MATHLIB product to be easy to use in various environ-
ments. (Analysis of Proposal)

7. We agree with the proposal that the CVS structure re-
flect the organization of the library structure. (Analysis
of Proposal)

8. CMS must be the arbiter of what it considers “large,”
taking into account the expected computing resources of
its users. (Analysis of Proposal)

9. We recommend that the MATHLIB product refrain from
duplicating functionality already present in the C++ stan-
dard library. (Candidate Library Organization)

10. We recommend that the MATHLIB product avoid incor-
porating functionality that is inherently not mathematical
in nature. (Candidate Library Organization)

11. We recommend that the MATHLIB product avoid incor-
porating functionality in the absence of widespread con-
sensus on how such functionality should behave. (Candi-
date Library Organization)

12. We recommend that CMS develop and document a list of
requirements for the functionality desired of MATHLIB
product, and that this list be sufficiently detailed as to
guide the selection of library components. (Criteria for
Inclusion in the Library)

13. We recommend that a revised proposal be produced that
directly addressees this list of requirements. (Criteria for
Inclusion in the Library)

16

14. We recommend additional review by CMS of the cover-
age of the proposed MATHLIB product. The appropriate
groups within CMS should be asked to comment on the
proposed scope and coverage of the library (distinct from
being asked to comment on the proposed design). (Re-
sources Spanned)

15. We recommend that CMS review the remaining unmen-
tioned functions in CERNLIB, in each of the subsections
listed in the proposal, to determine which functions are
needed. (CERNLIB: “B - Elementary Functions”)

16. We recommend that the organization of the MATHLIB
product be unconstrained by CERNLIB’s organization.
and instead reflect its own desired cohesiveness. (CERN-
LIB: “B - Elementary Functions”)

17. We recommend that, if CMS needs functions of a complex
variable, that such functionality be implemented using na-
tive C++, e.g. using the C++ classes std::complex<double>,
std::complex<float>, or std::complex<long double>.
(CERNLIB: “C - Equations and Special Functions”)

18. We recommend that the MATHLIB product provide a user
interface to mathematical special functions. (CERNLIB:
“C - Equations and Special Functions”)

19. We recommend individual review of the design of each
component library considered for inclusion in the MATH-
LIB product. (A Case Study)

20. We recommend that the special functions library be imple-
mented as a collection of overloaded free functions in some
defined namespace. (Exploration of Selected Alternatives)

21. We recommend that the interfaces for those functions al-
ready proposed for inclusion in the future Standard be
respected by the MATHLIB product’s special functions
library. (Exploration of Selected Alternatives)

22. We recommend that functions added to the special func-
tions library that are not part of the proposed future stan-
dard use a naming scheme and organization of signatures
in a style similar to that proposed for the future standard.
(Exploration of Selected Alternatives)

23. We recommend that GSL be used as the underlying imple-
mentation for the first version of such a special functions
library. (Exploration of Selected Alternatives)

24. We recommend that the proposal be redrafted so as to
address the weaknesses we have identified, and that the
revised proposal be reviewed in turn. (Summary)

17

1 A functional program is a single expression, which is executed by evaluating
the expression. Anyone who has used a spreadsheet has experience of functional
programming. In a spreadsheet, one specifies the value of each cell in terms of
the values of other cells. The focus is on what is to be computed, not how it
should be computed.

2 New types and functions defined by clients should be treated on an equal basis
with types and functions provided by the library.

3 Feedback from LHC Experiments on using CLHEP; Moneta, Lorenzo,
presented at the CLHEP workshop, 28 January 2003. Available as http://proj-
clhep.web.cern.ch/proj-clhep/Workshop-2003/CLHEP LHCfeedback.pdf

18

http://proj-clhep.web.cern.ch/proj-clhep/Workshop-2003/CLHEP_LHCfeedback.pdf
http://proj-clhep.web.cern.ch/proj-clhep/Workshop-2003/CLHEP_LHCfeedback.pdf

	Table of Contents
	1 Introduction
	1.1 Mission and Scope of this Review
	1.2 Overview
	1.3 General Impressions
	2 Underpinnings
	2.1 Project Goals
	2.2 Why C++?
	2.3 Critique of Points in the Proposal
	2.4 Critique of Analysis of Existing Software
	2.4.1 GSL
	2.4.2 GSL++
	2.4.3 CLHEP
	3 Library Organization
	3.1 Summary of Proposal
	3.2 Analysis of Proposal
	3.3 Candidate Library Organization
	4 Scope and Coverage
	4.1 Criteria for Inclusion in the Library
	4.2 Resources Spanned
	4.2.1 CERNLIB: ``B - Elementary Functions''
	4.2.2 CERNLIB: ``C - Equations and Special Functions''
	5 Design
	5.1 Criteria for Evaluation
	5.2 Critique of Proposed Design
	5.2.1 A Case Study
	5.2.2 Exploration of Selected Alternatives
	6 Conclusion
	6.1 Summary
	6.2 Reprise of Recommendations

